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Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension

S. Lübeck* and K. D. Usadel†

Theoretische Tieftemperaturphysik, Gerhard-Mercator Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany
~Received 19 June 1997!

We consider the Bak-Tang-Wiesenfeld sandpile model@Phys. Rev. Lett.59, 381 ~1987!; Phys. Rev. A38,
364 ~1988!# on square lattices in different dimensions (D<6). A finite-size scaling analysis of the avalanche
probability distributions yields the values of the distribution exponents, the dynamical exponent, and the
dimension of the avalanches. Above the upper critical dimensionDu54 the exponents equal the known
mean-field values. An analysis of the area probability distributions indicates that the avalanches are fractal
above the critical dimension.@S1063-651X~97!01711-X#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

Bak, Tang, and Wiesenfeld@1# introduced the concept o
self-organized criticality and realized it with the so-call
sandpile model@the Bak-Tang-Wiesenfeld~BTW! model#.
The steady-state dynamics of the system is characterize
the probability distributions for the occurrence of relaxati
clusters of a certain size, area, duration, etc. In the crit
steady state these probability distributions exhibit power-
behavior. Much work has been done in the two-dimensio
case. Dhar introduced the concept of ‘‘Abelian sandp
models,’’ which allows one to calculate the static propert
of the model exactly@2#, e.g. the height probabilities, heigh
correlations, and number of steady-state configurati
@2–5#. Recently, the exponents of the probability distributi
that describes the dynamical properties of the system w
determined numerically@6#. On the other hand, both mean
field solutions~see@7# and references therein! and the solu-
tion on the Bethe lattice@8# are well established and bot
yield identical values of the exponents. The mean-field
proaches are based on the assumption that above the u
critical dimensionDu the avalanches do not form loops an
the avalanche propagation can be described as a branc
process@9#. Despite various theoretical and numerical e
forts, the value ofDu is still controversial. In an early work
Obukhov predicted Du54 using an e-expansion
renormalization-group scheme@10#. Later Dı́az-Guilera per-
formed a momentum-space analysis of the correspon
Langevin equations, which confirmedDu54 @11#. Grass-
berger and Manna concluded from numerical investigati
of the BTW model inD<5 the same result@12#. In contrast,
comparable simulations and the similarity to percolation
several authors to the conjecture thatDu56 @13#, compa-
rable to the related forest fire model of Drossel and Schw
~see@14# for an overview!.

In the present work we consider the BTW model in va
ous dimensions (D<6) on lattice sizes that are significant
larger than those considered in previous works@12,13,15#. A
finite-size scaling analysis allows us to determine the a
lanche exponents and the dynamical exponent and to ana
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whether the avalanche clusters are fractal. Our analysis
veals that the upper critical dimension isDu54 and that the
avalanches display a fractal behavior aboveDu . We discuss
the dimensional dependence of the exponents and de
scaling relations. Finally, we briefly report results of simil
investigations of theD-state model, which is a possible ge
eralization of the two-state model introduced by Manna
two dimensions@16#. It is known that the BTW model and
Manna’s model belong to different universality classes
D52 @15,6#.

II. MODEL AND SIMULATIONS

We consider theD-dimensional BTW model on a squar
lattice of linear sizeL in which integer variableshr>0 rep-
resent local heights. One perturbs the system by adding
ticles at a randomly chosen sitehr according to

hr°hr11 , ~1!

with randomr . A site is called unstable if the correspondin
heighthr exceeds a critical valuehc , i.e., if hr>hc , where
hc is given byhc52D. An unstable site relaxes, its value
decreased byhc , and the 2D next neighboring sites are in
creased by one unit, i.e.,

hr→hr2hc , ~2!

hnn,r→hnn,r11. ~3!

In this way the neighboring sites may be activated and
avalanche of relaxation events may take place. The sites
updated in parallel until all sites are stable. Then the n
particle is added@Eq. ~1!#. We assume open boundary co
ditions with heights at the boundary fixed to zero.

System sizesL<256 for D53, L<80 for D54, L<36
for D55, andL<18 forD56 are investigated. Starting with
a lattice of randomly distributed heightshP$0,1,2, . . . ,
hc21%, the system is perturbed according to Eq.~1! and
Dhar’s ‘‘burning algorithm’’ is applied in order to check i
the system has reached the critical steady state@2#. Then we
start the actual measurements, which are averaged ov
least 23106 nonzero avalanches. We studied four differe
properties characterizing an avalanche: the number of re
ation eventss, the number of distinct toppled lattice sitesd
5138 © 1997 The American Physical Society
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56 5139BAK-TANG-WIESENFELD SANDPILE MODEL AROUND . . .
~area!, the durationt, and the radiusr . For a detailed de-
scription see@6# and references therein. In the critical stea
state the corresponding probability distributions should o
power-law behavior characterized by exponentsts , td , t t ,
andt r according to

Ps~s!;s2ts, ~4!

Pd~sd!;sd
2td, ~5!

Pt~ t !;t2t t, ~6!

Pr~r !;r 2tr. ~7!

Because a particular lattice site may topple several times
number of toppling events exceeds the number of dist
toppled lattice sites, i.e.,s>sd . We will see that these mul
tiple toppling events can be neglected forD>3 and the dis-
tributionsPs(s) andPd(sd) display the same scaling beha
ior.

Scaling relations for the exponentsts , td , t t , andt r can
be obtained if one assumes that the size, area, duration
radius scale as a power of each other, for instance,

t;r g tr. ~8!

The relationPt(t)dt5Pr(r )dr for the corresponding distri
bution functions then leads to the scaling relation

g tr5
t r21

t t21
. ~9!

The exponentsgdr ,g rs ,gsd , etc., are defined in the sam
way. The exponentg tr is usually identified with the dynami
cal exponentz and various theoretical efforts have been p
formed to determinez @3,17,11#. Dı́az-Guilera @11# con-
cluded from a momentum-space analysis of
corresponding Langevin equations that the dynamical ex
nent of the BTW model is given by

z5
D12

3
, ~10!

which was already suggested by Zhang@17#. Numerical in-
vestigations suggest that Eq.~10! is valid @15,6#. On the
other hand, Majumdar and Dhar@3# used the equivalenc
between the sandpile model and theq→0 limit of the Potts
model to estimatez5 5

4 in D52, which contradicts Eq.~10!.
Christensen and Olami showed that inside an avalan

no holes can occur in the steady state@13#, where a hole is a
set of untoppled sites that are completely enclosed
toppled lattice sites. This implies forD52 that the ava-
lanches are simply connected and compact. ForD.2 holes
are still forbidden in the steady state, but loops of topp
sites can occur. Then the avalanches are no longer sim
connected~see below!. Even though no holes inside an av
lanche cluster can occur, it was already assumed that a
the critical dimensionDu the avalanches have the fract
dimension 4@8#. Here the propagation of an avalanche ca
not be considered as a connected activation front of topp
sites. The behavior is similar to an branching process wh
disconnected arms propagate without forming loops. If
y

he
ct

nd

-

e
o-

he

y

d
ly

ve

-
d

re
e

avalanche clusters are not fractal, the scaling exponentgdr ,
which describes how the number of toppled sitessd scales
with the radiusr , equals the dimensionD. Thus the dimen-
sional dependence of the exponentgdr is an appropriate too
to investigate the developing fractal behavior with increas
dimension.

The measurement of the probability distributions and
corresponding exponents@Eqs. ~4!–~7!# is affected by the
finite systems size. For instance, the two-dimensional BT
model displays a logarithmic system size dependence of
distribution exponents@18,6#. Another example is the relate
two-dimensional Zhang model@17#, where the exponents de
pend on the inverse system size, i.e., the corrections ar
the relative magnitude of the boundaryL21 @19#. In these
cases the exponent of the infinite system could be obta
by an extrapolation to the infinite system size. If the valu
of the avalanche exponentst are not affected by the finite
system size, the powerful method of finite-size scaling wo
be applicable. Here the probability distributions@Eqs. ~4!–
~7!# obey the scaling equation

Px~x,L !5L2bxgx~L2nxx!, ~11!

with xP$s,d,t,r % and wheregx is called the universal func
tion @21#. The exponenttx is related to the scaling exponen
bx andnx via

bx5txnx . ~12!

The exponentnx determines the cutoff behavior of the pro
ability distribution. If finite-size scaling works, all distribu
tions Px(x,L) for various system sizes have to collapse,
cluding their cutoffs. Then the argument of the univers
function g has to be constant, i.e.,xmaxL

2nx5const. Using
the corresponding scaling relation@Eq. ~9!# yields
r max

gxr L2nx5const. The cutoff radiusr max should scale with
the system sizeL and finally one gets

nx5gxr . ~13!

The advantage of the finite-size scaling analysis is tha
yields additionally to the avalanche exponentstx the impor-
tant scaling exponentsgdr andg tr5z.

III. D53

In D53 multiple toppling events, i.e.,s.sd , occurs for
less than 5% of all avalanches~nearly 42% inD52 and less
than 0.1% inD54!. These multiple toppling avalanches d
not affect the scaling behavior of the probability distributio
Ps(s), in the sense that there is no significant differen
betweenPs(s) andPd(sd) ~see Fig. 1!. Thus one concludes
that td5ts , which is confirmed by Ben-Hur and Biham
who reported thatgsd51 @15#.

The exponentstd , t t , and t r , obtained from a power-
law fit of the straight portion of the probability distribution
@Eqs.~5!–~7!#, are plotted in Fig. 2 for various system siz
L. The system size dependence vanishes quickly with
creasingL. The dotted lines in Fig. 2 corresponds to aL22

dependence of the avalanche exponents. The finite-size
rections are of the magnitude of the boundary term in th
dimensions. ForL>64 the system size dependence oftd and
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5140 56S. LÜBECK AND K. D. USADEL
t t is smaller than the statistical error of the determination a
the average of the exponents forL>64 would be a good
estimate of the values of the infinite system. We obtain t
valuestd51.33360.007 andt t51.59760.012. The value
of td is in agreement with previous investigations based
smaller system sizes@12,15#. The exponentt r seems to con-
verge in the vicinity of 2, but the accuracy of this measur
ment is not sufficient to decide whether the value is exac
2. However, the following analysis lead us to the conclusi
that t r52.

Since the avalanche exponentstd and t t display no sig-
nificant system size dependence forL>64, the above-
mentioned finite-size scaling analysis is applicable@Eq.
~11!#. The scaling plots of the distributionsPd(sd) andPt(t)
are shown in Figs. 3 and 4, respectively. One obtains a c
vincing data collapse of the various curves corresponding

the different system sizes forbd54, nd53 and b t5
8
3 ,

n t5z5 5
3 , respectively. Using Eq.~12!, the avalanches expo-

FIG. 1. Probability distributionsPs(s) and Pd(sd) for L
P$16,32,64,128,256%. For L,256 the curves are shifted in the
downward direction. Note that there is no significant differen
between both distributions, i.e., multiple toppling events can
neglected inD53.

FIG. 2. System size dependence of the avalanches expon
td , t t , andt r for D53. The horizontal dashed lines correspond
the values4

3 , 8
5 , and 2. The dotted lines are fits according to th

equationstx(L)5tx2const3L22.
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nents are given bytd5 4
3 and t t5

8
5 . These values are in

agreement with our results obtained from a direct determi
tion of the exponents via regression. The valuez5 5

3 agrees
with Eq. ~10! andnd53 reflects the fact that the avalanche
are not fractal. This does not mean that the avalanche c
ters are still simply connected since the avalanches can fo
loops. But these rare loops do not contribute to the scal
behavior. Both scaling relationst r215z(t t21) and
t r215gdr(td21) confirm our assumption thatt r52. In
summary, our direct measurements as well as the finite-s
scaling analysis both yield that the avalanche exponents
the three-dimensional BTW model are consistent with t

valuestd5ts5
4
3 , t t5

8
5 , t r52, z5 5

3 , andgdr53. All scal-
ing relations that connect these exponents are fulfilled.

IV. D>4

Focusing our attention on the area and duration proba
ity distribution, we find that finite-size scaling works quit
well again. In Figs. 5, 6, and 7 we present the scaling plots
the avalanche distributionPd(sd) for D54, D55, and

e

nts

FIG. 3. Scaling plot of the probability distributionPd(sd) for
LP$64,96,128,. . . ,256% andD53. The dashed line corresponds t
a power law with an exponent43 .

FIG. 4. Scaling plot of the probability distributionPt(t) for L
P$64,96,128,. . . ,256% andD53. The dashed line corresponds to
power law with an exponent85 .
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56 5141BAK-TANG-WIESENFELD SANDPILE MODEL AROUND . . .
D56, respectively. In all cases one gets a satisfying d
collapse forbd56 andnd54, i.e., the corresponding ava

lanches exponent equals the mean-field valuetd5 3
2 . A simi-

lar analysis displays that the scaling exponents of the du
tion distribution Pt(t) are given by b t54 and n t52,
resulting int t52 ~not shown!. The avalanche exponents o
the BTW model inD>4 agree with the mean field expo

nentstd5 3
2 , t t52, andz52 and the upper critical dimen-

sion isDu54. All exponents are listed in Table I. An analy
sis of the probability distribution Pr(r ) and the
determination of the exponentt r remains outside the scop
of this paper because the considered system sizes~limited by
computer power! are too small. For instance, in the case
D54 the largest considered system sizes isL580. The cor-
responding distributionPr(r ) exhibits a very small power-
law region~less than a half decade!, forbidding any accurate
determination oft r .

The valuegdr54 corresponds to the fact that the av
lanches of the BTW model display a fractal behavior abo
the critical dimensionDu , whereby the area scales with th

FIG. 5. Scaling plot of the probability distributionPd(sd) for
LP$16,24,32,48,. . . ,80% and D54. The dashed line correspond
to a power law with the mean-field exponent3

2 .

FIG. 6. Scaling plot of the probability distributionPd(sd) for
LP$8,16,20,24,. . . ,36% andD55. The dashed line corresponds t
a power law with the mean-field exponent3

2 .
ta

a-

f

e

radius according tosd;r 4, independently of the embeddin
dimensionD. For D<Du the avalanches are not fractal. W
display this developing fractal behavior in Fig. 8, where fo
arbritrarily chosen avalanche clusters are shown for th
different dimensions. ForD>4 we plotted three-dimensiona
cuts through the center of mass of the avalanche clust
The isolated islands that appear in the avalanche snaps
for D>4 are caused by the three-dimensional cuts. In
cases the system size isL532 and the area of the plotte
avalanches issd51520 in D53, sd517 500 inD54, and
sd5201 000 inD55, i.e., sd

1/D is nearly fixed. If the ava-
lanches are not fractal in all dimensions the scaling relat
sd;r d holds for allD and the radius should be independe
of the embedding dimension. One can see from Fig. 8 t
the radius of the shown avalanches is roughly the same
D53 andD54. Despite some loops~e.g., in the upper left
part of the plotted three-dimensional avalanche! the ava-
lanche clusters look nearly compact. In the five-dimensio
case the clusters display a fractal behavior. The radius se
to be larger compared to the lower-dimensional cases, in
cating that the equationsd;r D does not hold inD55. Of
course these snapshots only illustrate the developing fra
behavior.

Our results are in contrast to previous investigations p
formed by Ja´nosi and Cziro´k @20#. They calculated the num-
ber of toppled siteN(r ) inside a sphere with radiusr . The
sphere is centered at the center of mass of the avalan
cluster. The fractal dimensionD f is obtained from the scal-

FIG. 7. Scaling plot of the probability distributionPd(sd) for
LP$8,10,12,. . . ,18% and D56. The dashed line corresponds to
power law with the mean-field exponent3

2 .

TABLE I. Values of the exponents of the BTW model in var
ous dimensions.

Exponent D52 D53 D54 D55 D56

ts 1.293 td td td td

td
4
3

4
3

3
2

3
2

3
2

t t
3
2

8
5 2 2 2

t r
5
3 2

z 4
3

5
3 2 2 2

gdr 2 3 4 4 4
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5142 56S. LÜBECK AND K. D. USADEL
ing law N(r );r D f . Considering one system size~L5100 in
D53!, they found that the fractal dimension is given by
D f'2.75, i.e., the avalanches already display a fractal b
havior in three dimensions. We performed the same analy
and reproduced their results within the error bars. Analyzin
various system sizes, however, we find that the appare
fractal dimension depends on the system size and tends
D f53 with increasingL ~not shown!, in agreement with our
results, discussed above.

V. DISCUSSION

In the following we examine the avalanche exponents as
function of the dimensionD. Consider the average ava-
lanche size

^s&L5E sPs~s,L !ds. ~14!

Using the finite-size scaling ansatz@Eq. ~11!#, which works
for D>3, one gets@21#

^s&L;L2ns2bs5Lgsr~22ts!, ~15!

if ts,2. On the other hand, it is known exactly@2# that
^s&L;L2 in D52 and arguing that in undirected models
particles diffuse out to the boundary, one gets the same
sult, independent of the dimension@21#. Like Grassberger
and Manna@12#, we plot in Fig. 9 the average avalanche
size as a function of the system size for various dimension
Except for deviations for small system sizes, all data poin
collapse on a single curve. Thus one concludes that the eq
tion 25gsr(22ts) is fulfilled. Neglecting multiple toppling

FIG. 8. Snapshots of four arbritrarily chosen avalanche cluste
for D53 ~upper left!, D54 ~upper right!, andD55 ~lower left and
right!. For D>4 three-dimensional cuts through the center of mas
are shown. In the three-dimensional avalanche a loop can be see
the upper left part of the avalanche cluster.
e-
is
g
nt
to

a

e-
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ts
a-

~ts5td and gsr5gdr!, which is valid for D>3, and using
that the avalanches are not fractal (gdr5D), which is ful-
filled for D<Du , one gets

td522
2

D
~16!

for 3<D<Du @22#. This equation was already derived in th
continuum limit by Zhang using energy conservation and
local nature of energy transfer@17#. Now we see that the
failure of this equation forD52 is caused by multiple top
pling events, which are essential in the two-dimensio
model only. ForD>3 multiple toppling can be neglecte
and Eq.~16! is fulfilled. Using

z~t t21!5gdr~td21! ~17!

and Eq.~10!, the duration exponentt t is given by

t t54
D21

D12
, ~18!

again for 3<D<Du .
Finally, we briefly report results of similar investigation

of the relatedD-state sandpile model based on Manna’s tw
dimensional two-state model@16#. Here the critical heighthc
equals the dimensionD and an unstable site relaxes to zer
whereby the particles are distributed randomly among

TABLE II. Values of the exponents ofD-state model in various
dimensions.

Exponent D52 D53 D54 D55

ts
14
11 ' 14

10 td td

td
11
8 ' 13

9
3
2

3
2

t t
3
2 ' 37

21 2 2

t r
7
4 ' 7

3

z 3
2 ' 7

4 2 2

gdr 2 '3 4 4

rs

s
in

FIG. 9. Average avalanche size^s&L as a function of the system
size in various dimensions. The solid line corresponds to the po
law ^s&L;L2, which is exactly inD52 @2#.
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56 5143BAK-TANG-WIESENFELD SANDPILE MODEL AROUND . . .
nearest neighbors. Again we find that the upper critical
mension isDu54. In contrast to the BTW model, the dimen
sional dependence of the dynamical exponent is given

z5(D14)/4. Our preliminary results forD53 arets'
14
10 ,

td' 13
9 , t t'

37
21 , t r'

7
3 , andgdr'3. We find thattd is defi-

nitely larger thants ~in agreement with@15#!, i.e., multiple
toppling events are relevant in the three-dimensional mo
Because in theD-state model the toppling processes are i
tropic only on average, holes inside an avalanche cluster
occur. But, nevertheless, we find thatgdr5D for D<Du ,
i.e., these holes occur only on finite sizes and do not cont
ute to the scaling behavior. Above the critical dimensi
Du54 the avalanches have fractal dimension 4. InD54 and
D55 the model is characterized by the mean-field ex
nents, comparable to the BTW model. The values of
exponents are listed in Table II.

VI. CONCLUSION

We studied numerically the dynamical properties of t
BTW model on a square lattice in various dimensions. Us
et
i-

y

l.
-
an

b-

-
e

g

a finite-size scaling analysis, we determined the probab
distribution exponents, the dynamical exponent, and the
mension of the avalanches. Our analysis reveals that mul
toppling events are relevant in the low-dimensional case o
and can be neglect forD>3. For D53 the exponents are

given by t r52, t t5
8
5 , td5 4

3 , andz5 5
3 . For D>4 the ex-

ponents agree with the mean-field and Bethe lattice ex
nents, respectively. We conclude from our numerical res
that below the critical dimension the dynamical exponentz is
given by z5(D12)/3. The avalanche clusters are simp
connected forD52 only. ForD.2 loops occur, but do no
contribute to the scaling behavior until the embedding
mension exceeds the upper critical dimensionDu . AboveDu

the avalanches are fractal with the fractal dimension 4.
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