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Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension
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We consider the Bak-Tang-Wiesenfeld sandpile m¢Bélys. Rev. Lett59, 381(1987); Phys. Rev. A38,
364 (1988] on square lattices in different dimensior3<£6). A finite-size scaling analysis of the avalanche
probability distributions yields the values of the distribution exponents, the dynamical exponent, and the
dimension of the avalanches. Above the upper critical dimenBigir4 the exponents equal the known
mean-field values. An analysis of the area probability distributions indicates that the avalanches are fractal
above the critical dimensiofiS1063-651X97)01711-X]

PACS numbe(s): 05.40:+j

I. INTRODUCTION whether the avalanche clusters are fractal. Our analysis re-
veals that the upper critical dimensionDs,=4 and that the
Bak, Tang, and Wiesenfeld ] introduced the concept of avalanches display a fractal behavior ab®e We discuss
self-organized criticality and realized it with the so-calledthe dimensional dependence of the exponents and derive
sandpile mode[the Bak-Tang-WiesenfeldBTW) model.  scaling relations. Finally, we briefly report results of similar
The steady-state dynamics of the system is characterized ligvestigations of th&-state model, which is a possible gen-
the probability distributions for the occurrence of relaxationeralization of the two-state model introduced by Manna in
clusters of a certain size, area, duration, etc. In the criticalwo dimensiong16]. It is known that the BTW model and
steady state these probability distributions exhibit power-lanManna’s model belong to different universality classes in
behavior. Much work has been done in the two-dimensionaD =2 [15,6).
case. Dhar introduced the concept of “Abelian sandpile
models,” which allows one to calculate the static properties Il. MODEL AND SIMULATIONS
of the model exactly2], e.g. the height probabilities, height _ ) )
correlations, and number of steady-state configurations We consider thé-dimensional BTW model on a square
[2-5]. Recently, the exponents of the probability distributionlattice of linear size. in which integer variables, =0 rep-
that describes the dynamical properties of the system wergsent local heights. One perturbs the system by adding par-
determined numericallj6]. On the other hand, both mean- ticles at a randomly chosen site according to
field solutions(see[7] and references thergiand the solu-
tion on the Bethe lattic¢8] are well established and both he—h+1, @

yield identical values of the exponents. The mean-field aPiyith randomr. A site is called unstable if the corresponding
proaches are based on the assumption that above the Up‘?]%righth, exceeds a critical valuby, i.e., if h,=h,, where

critical dimensionD,, the avalanches do not form loops and . is given byh,=2D. An unstable site relaxes, its value is
the avalanche propagation can be (_jescnbed as a pramh'ﬂgcreased b : and the D next neighboring s,ites are in-
process[9]. Despite various theoretical and numerical ef"creased by oncé unit. i.e

forts, the value oD, is still controversial. In an early work, T

Obukhov  predicted D,=4 using an e-expansion h,—h,—h,, @)
renormalization-group scheni&0]. Later Daz-Guilera per-
formed a momentum-space analysis of the corresponding R r—hNpn 1. (3)

Langevin equations, which confirmdd,=4 [11]. Grass-
berger and Manna concluded from numerical investigationsn this way the neighboring sites may be activated and an
of the BTW model inD=<5 the same resultl2]. In contrast, avalanche of relaxation events may take place. The sites are
comparable simulations and the similarity to percolation ledupdated in parallel until all sites are stable. Then the next
several authors to the conjecture that=6 [13], compa- particle is addedEq. (1)]. We assume open boundary con-
rable to the related forest fire model of Drossel and Schwabdlitions with heights at the boundary fixed to zero.
(see[14] for an overview. System sized <256 forD=3, L<80 forD=4, L<36
In the present work we consider the BTW model in vari-for D=5, andL<18 forD =6 are investigated. Starting with
ous dimensionsI<6) on lattice sizes that are significantly a lattice of randomly distributed heighte<{0,1,2...,
larger than those considered in previous wdrks,13,19. A h.—1}, the system is perturbed according to Et) and
finite-size scaling analysis allows us to determine the avabhar’s “burning algorithm” is applied in order to check if
lanche exponents and the dynamical exponent and to analytiee system has reached the critical steady $&telThen we
start the actual measurements, which are averaged over at
least 2< 10° nonzero avalanches. We studied four different
*Electronic address: sven@thp.uni-duisburg.de properties characterizing an avalanche: the number of relax-
"Electronic address: usadel@thp.uni-duisburg.de ation eventss, the number of distinct toppled lattice sitg
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(areq, the durationt, and the radius. For a detailed de- avalanche clusters are not fractal, the scaling expomngnt
scription sed 6] and references therein. In the critical steadywhich describes how the number of toppled sitgsscales
state the corresponding probability distributions should obewvith the radiusr, equals the dimensioBR. Thus the dimen-

power-law behavior characterized by exponents 74, 7, sional dependence of the exponegt is an appropriate tool
and 7, according to to investigate the developing fractal behavior with increasing
dimension.
Ps(s)~s™7s, 4 The measurement of the probability distributions and the
corresponding exponenf&gs. (4)—(7)] is affected by the
Pa(sa)~Sq™ ", ®  finite systems size. For instance, the two-dimensional BTW
B model displays a logarithmic system size dependence of the
P~t"7, (6) distribution exponentgl8,6]. Another example is the related

two-dimensional Zhang modEglL7], where the exponents de-
pend on the inverse system size, i.e., the corrections are of
he relative magnitude of the boundaky ! [19]. In these
ases the exponent of the infinite system could be obtained
y an extrapolation to the infinite system size. If the values
of the avalanche exponentsare not affected by the finite
system size, the powerful method of finite-size scaling would
be applicable. Here the probability distributiofsgs. (4)—

(7)] obey the scaling equation

P(r)~r—"r. (7)

. . . . t
Because a particular lattice site may topple several times, th
number of toppling events exceeds the number of distinc
toppled lattice sites, i.es=sy. We will see that these mul-
tiple toppling events can be neglected =3 and the dis-
tributions P¢(s) andPy(sy) display the same scaling behav-
ior.
Scaling relations for the exponents, 74, 7¢, andr, can
be obtained if one assumes that the size, area, duration, and P, (x,L)=L"Pxg,(L~ "), (11
radius scale as a power of each other, for instance,
with xe{s,d,t,r} and wheregg, is called the universal func-
t~r7e, tS) tion [21]. The exponent, is related to the scaling exponents

and v, via
The relationP,(t)dt=P,(r)dr for the corresponding distri- P "X

bution functions then leads to the scaling relation By= TyVx. (12)
1 ) The exponeni, determines the cutoff behavior of the prob-
L ability distribution. If finite-size scaling works, all distribu-

tions P,(x,L) for various system sizes have to collapse, in-
The exponentsyy,,¥rs,¥sq, €tC., are defined in the same cluding their cutoffs. Then the argument of the universal
way. The exponeny,, is usually identified with the dynami- function g has to be constant, i.ex;,,,L ~"x=const. Using
cal exponent and various theoretical efforts have been perthe corresponding scaling relatiofEq. (9)] yields
formed to determinez [3,17,11. Diaz-Guilera[11] con- r’ | ~*x=const. The cutoff radius ., should scale with
cluded from a momentum-space analysis of theype sysiem sizé and finally one gets
corresponding Langevin equations that the dynamical expo-
nent of the BTW model is given by V= Yxr - (13

~D+2

= T, (10)

The advantage of the finite-size scaling analysis is that it
yields additionally to the avalanche exponentghe impor-
tant scaling exponentgy, and y;, = z.

which was already suggested by Zhdrig]. Numerical in-

vestigations suggest that E¢LO) is valid [15,6]. On the . D=3

other hand, Majumdar and Dh#B] used the equivalence

between the sandpile model and tie>0 limit of the Potts In D=3 multiple toppling events, i.es>sy, occurs for
model to estimateg= 2 in D=2, which contradicts Eq10).  less than 5% of all avalanchésearly 42% inD=2 and less

Christensen and Olami showed that inside an avalanchiéan 0.1% inD=4). These multiple toppling avalanches do
no holes can occur in the steady stt8], where a hole is a  not affect the scaling behavior of the probability distribution
set of untoppled sites that are completely enclosed bys(s), in the sense that there is no significant difference
toppled lattice sites. This implies fdD=2 that the ava- betweenP4(s) andPy(sy) (see Fig. 1L Thus one concludes
lanches are simply connected and compact.[For2 holes that 7y= 75, which is confirmed by Ben-Hur and Biham,
are still forbidden in the steady state, but loops of toppledvho reported thatysq=1 [15].
sites can occur. Then the avalanches are no longer simply The exponentsy, 7, and r,, obtained from a power-
connectedsee below Even though no holes inside an ava- law fit of the straight portion of the probability distributions
lanche cluster can occur, it was already assumed that aboy&gs.(5)—(7)], are plotted in Fig. 2 for various system sizes
the critical dimensionD,, the avalanches have the fractal L. The system size dependence vanishes quickly with in-
dimension 4[8]. Here the propagation of an avalanche can-creasingL. The dotted lines in Fig. 2 corresponds td a2
not be considered as a connected activation front of toppledependence of the avalanche exponents. The finite-size cor-
sites. The behavior is similar to an branching process whergections are of the magnitude of the boundary term in three
disconnected arms propagate without forming loops. If thedimensions. Fot. =64 the system size dependencergaind
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FIG. 1. Probability distributionsPy(s) and P4(sy) for L FIG. 3. Scaling plot of the probability distributioRy(s,) for

<{16,32,64,128,296 For L<256 the curves are shifted in the Le{64,96,128,_. .,256¢ andDA: 3. The dashed line corresponds to

downward direction. Note that there is no significant difference® POWer law with an exponeri

between both distributions, i.e., multiple toppling events can be

neglected iD= 3. nents are given byy=3 and r,.=2. These values are in
agreement with our results obtained from a direct determina-

7, Is smaller than the statistical error of the determination andion of the exponents via regression. The Vah;eg agrees

the average of the exponents foe=64 would be a good with Eq. (10) and v4=3 reflects the fact that the avalanches

estimate of the values of the infinite system. We obtain theyre not fractal. This does not mean that the avalanche clus-

values 73=1.333£0.007 andr,=1.597£0.012. The value ters are still simply connected since the avalanches can form

of 74 is in agreement with previous investigations based onoops. But these rare loops do not contribute to the scaling

smaller system sizgd 2,15. The exponent; seems to con- bpehavior. Both scaling relationsr,—1=z(7,—1) and

verge in the vicinity of 2, but the accuracy of this measure-r, —1=v,,(ry—1) confirm our assumption that.=2. In

ment is not sufficient to decide whether the value is exaCﬂ)summary, our direct measurements as well as the finite-size

2. However, the following analysis lead us to the conclusionscaling analysis both yield that the avalanche exponents of

that 7, =2. . . the three-dimensional BTW model are consistent with the

- 4 8 5
et e Slrche xponenE G S 0 S valeor, - r-t, 2.2 andyy 3 Allscah
. N i s : ing relations that connect these exponents are fulfilled.
mentioned finite-size scaling analysis is applicalpleg.
(11)]. The scaling plots of the distributior®;(sy) andP(t)
- - - IV. D=4

are shown in Figs. 3 and 4, respectively. One obtains a con-

vincing data collapse of the various curves corresponding to  Focusing our attention on the area and duration probabil-

the different system sizes foBy=4, v4=3 and B;=3, ity distribution, we find that finite-size scaling works quite

v,=z=3, respectively. Using Eq12), the avalanches expo- well again. In Figg. 5{ 6, gnd 7 we present the scaling plots of
the avalanche distributiorPy(sy) for D=4, D=5, and
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FIG. 2. System size dependence of the avalanches exponents
74, T¢, andr, for D=23. The horizontal dashed lines correspond to  FIG. 4. Scaling plot of the probability distributioR,(t) for L
the valuess, £, and 2. The dotted lines are fits according to the €{64,96,128, . .,25¢ andD =3. The dashed line corresponds to a

equationsr,(L) = 7,—constxL 2, power law with an exponer%.
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FIG. 5. Scaling plot of the probability distributioRy(s,) for
Le{16,24,32,48,..,80 andD=4. The dashed line corresponds
to a power law with the mean-field expone}n
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FIG. 7. Scaling plot of the probability distributioRy(s,) for
Le{8,10,12,..,18 andD=6. The dashed line corresponds to a
power law with the mean-field expone%u

D=6, respectively. In all cases one gets a satisfying dataadius according ts;~r*, independently of the embedding

collapse forBy=6 andvy=4, i.e., the corresponding ava-

lanches exponent equals the mean-field vaje3. A simi-

lar analysis displays that the scaling exponents of the dur
tion distribution P,(t) are given by 8;=4 and »;=2,
resulting in7;=2 (not shown. The avalanche exponents of
the BTW model inD=4 agree with the mean field expo-
nentstq=3, 7,=2, andz=2 and the upper critical dimen-
sion isD,=4. All exponents are listed in Table I. An analy-
sis of the probability distribution P,(r) and the
determination of the exponent remains outside the scope
of this paper because the considered system slireited by

computer powerare too small. For instance, in the case of

D=4 the largest considered system sizes4s80. The cor-
responding distributiorP,(r) exhibits a very small power-
law region(less than a half decagjdorbidding any accurate
determination ofr, .

The valueyy,=4 corresponds to the fact that the ava-

lanches of the BTW model display a fractal behavior abov
the critical dimensiorD,,, whereby the area scales with the

10

10

D=5

10

FIG. 6. Scaling plot of the probability distributioRy(sy) for
L e{8,16,20,24,..,3 andD=5. The dashed line corresponds to
a power law with the mean-field exponeht

dimensionD. For D=<D,, the avalanches are not fractal. We
display this developing fractal behavior in Fig. 8, where four
Aarbritrarily chosen avalanche clusters are shown for three
different dimensions. FdD =4 we plotted three-dimensional
cuts through the center of mass of the avalanche clusters.
The isolated islands that appear in the avalanche snapshots
for D=4 are caused by the three-dimensional cuts. In all
cases the system size lis=32 and the area of the plotted
avalanches is3=1520 inD=3, s4=17 500 inD=4, and
sg=201000 inD=5, i.e., siP is nearly fixed. If the ava-
lanches are not fractal in all dimensions the scaling relation
sq~r9 holds for allD and the radius should be independent
of the embedding dimension. One can see from Fig. 8 that
the radius of the shown avalanches is roughly the same for
D=3 andD=4. Despite some loop&.g., in the upper left
part of the plotted three-dimensional avalanchiee ava-
lanche clusters look nearly compact. In the five-dimensional
case the clusters display a fractal behavior. The radius seems
e[o be larger compared to the lower-dimensional cases, indi-
cating that the equatiosy~rP does not hold inD=5. Of
course these snapshots only illustrate the developing fractal
behavior.

Our results are in contrast to previous investigations per-
formed by Jaosi and Czirk [20]. They calculated the num-
ber of toppled siteN(r) inside a sphere with radius The
sphere is centered at the center of mass of the avalanche
cluster. The fractal dimensioD; is obtained from the scal-

TABLE |. Values of the exponents of the BTW model in vari-
ous dimensions.

Exponent D=2 D=3 D=4 D=5 D=6
T 1.293 T4 T4 T4 T4
4 4 3 3 3
Tq 3 3 2 2 2
T 3 g 2 2 2
Ty § 2
z 3 2 2 2 2
Yar 2 3 4 4 4
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FIG. 9. Average avalanche sizs), as a function of the system
size in various dimensions. The solid line corresponds to the power
law (s), ~L2, which is exactly inD=2 [2].

(7¢= 74 and ys,= y4,), Which is valid forD=3, and using
that the avalanches are not fractaly;{=D), which is ful-

filled for D<D,, one gets
FIG. 8. Snapshots of four arbritrarily chosen avalanche clusters

for D=3 (upper lef}, D=4 (upper righ}, andD =5 (lower left and 2
right). For D=4 three-dimensional cuts through the center of mass =24 (16)
are shown. In the three-dimensional avalanche a loop can be seen in

the upper left part of the avalanche cluster. for 3<D=D, [22). This equation was already derived in the

. D — o ) continuum limit by Zhang using energy conservation and the
mgilawN(r) r=r. Considering one system .S'zb._ 1(.)0 M local nature of energy transf¢i7]. Now we see that the
D=3), they found that the fractal dimension is given by ¢ire of this equation foD=2 is caused by multiple top-
D;~2.75, i.e., the avalanches already display a fractal be;

havior in th di . ; d th | %ing events, which are essential in the two-dimensional
avior in three dimensions. We performed the same analysig, , je| only. ForD=3 multiple toppling can be neglected

and reproduced their results within the error bars. Analyzinqand Eq.(16) is fulfilled. Using
various system sizes, however, we find that the apparent ' '

fractal dimension depends on the system size and tends to 2(1—1) = yg (14— 1) (17)
D=3 with increasingd- (not shown, in agreement with our
results, discussed above. and Eq.(10), the duration exponent, is given by
V. DISCUSSION _,b-1
=4 D12’ (18

In the following we examine the avalanche exponents as a
function of the dimensiorD. Consider the average ava- again for 3<D<D,,.

lanche size Finally, we briefly report results of similar investigations
of the related-state sandpile model based on Manna’s two-

<S>L:f sPg(s,L)ds. (14  dimensional two-state modgl6]. Here the critical heighit.
equals the dimensioB and an unstable site relaxes to zero,

Using the finite-size scaling ansdtzqg. (11)], which works whereby the particles are distributed randomly among the

for D=3, one get$21] TABLE II. Values of the exponents d-state model in various

(s)~ L 2vsBs— | ¥sr(2- 79 (15) dimensions.

if 7.<2. On the other hand, it is known exactig] that ~ EXPonent D=2 D=3 D=4 D=5
(s).~L? in D=2 and arguing that in undirected models . 14 ~ 14 . -
particles diffuse out to the boundary, one gets the same re~ ﬁ j_f; g,d g,d
sult, independent of the dimensi¢@1]. Like Grassberger ¢ 5 2 2 2
and Manna[12], we plot in Fig. 9 the average avalanches ™t 3 “{1 2 2
size as a function of the system size for various dimensiongx 1 ~3

Except for deviations for small system sizes, all data pointx 3 ~1 2 2
collapse on a single curve. Thus one concludes that the equg;, 2 ~3

tion 2=y, (2—7) is fulfilled. Neglecting multiple toppling
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nearest neighbors. Again we find that the upper critical di-a finite-size scaling analysis, we determined the probability
mension iD,=4. In contrast to the BTW model, the dimen- distribution exponents, the dynamical exponent, and the di-
sional dependence of the dynamical exponent is given bynension of the avalanches. Our analysis reveals that multiple
z=(D+4)/4. Our preliminary results fob=3 arers~13,  toppling events are relevant in the low-dimensional case only

13 37 and can be neglect fdb=3. For D=3 the exponents are

Ta~%, n~35, ,~%, andy4,~3. We find thatry is defi-
nitely larger thanr, (in agreement witf15]), i.e., multiple ~ given by 7, =2, n=2, 74=%, andz=3. ForD=4 the ex-
toppling events are relevant in the three-dimensional modeponents agree with the mean-field and Bethe lattice expo-
Because in th®-state model the toppling processes are isonents, respectively. We conclude from our numerical results
tropic only on average, holes inside an avalanche cluster cahat below the critical dimension the dynamical exporeist
occur. But, nevertheless, we find thgj,=D for D<D,, given byz=(D+2)/3. The avalanche clusters are simply
i.e., these holes occur only on finite sizes and do not contribeonnected folD =2 only. ForD>2 loops occur, but do not
ute to the scaling behavior. Above the critical dimensioncontribute to the scaling behavior until the embedding di-
D,=4 the avalanches have fractal dimension 4Dk 4 and  mension exceeds the upper critical dimendign AboveD,,

D=5 the model is characterized by the mean-field expothe avalanches are fractal with the fractal dimension 4.
nents, comparable to the BTW model. The values of the

exponents are listed in Table II.
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